Matematiske formler og symboler m.m.
( x₀ P ³ )₊₋ ⊥ ⟂ Cos x₁ Sin x₂ ∠ An₊₋
⇔ ( P₀ P )₊ ⋅ n₊₋ = 0² x⁴ x⁵ x⁶ x⁷ x⁸ x⁹
( x₀ ; y₀ ) ( x₁ ; y₁ ) ( x₂ ; y₂ ) ( x₃ ; y₃ ) ( x₄ ; y₄ )( a₄ ; b₄ )
A ( x₀ + a₁ ; y₀ + a₂ ), B ( x₀ + b₁ ; y₀ + b₂ ) ℃ 180°{a}°
( x₀ ; y₀ ) ( x₁ ; y₁ ) ( x₂ ; y₂ ) ( x₃ ; y₃ ) ( x₄ ; y₄ )( a₄ ; b₄ )
A ( x₀ + a₁ ; y₀ + a₂ ), B ( x₀ + b₁ ; y₀ + b₂ ) ℃ 180°{a}°
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ - supers
Α α - Alpha
Β β - Beta
Γ γ - Gamma
Δ δ - Delta
Ε ε - Epsilon
Ζ ζ - Zeta
Θ θ - Theta
Λ λ -Lambda
Μ μ - Mu
Ν ν - Nu
Π π - Pi
Ρ ρ - Rho
Σ σ - Sigma
Τ τ - Tau
Υ υ - Upsilon
Φ φ - Phi
Χ χ - Chi
Ψ ψ - Psi
Ω ω - Omega
≅ - congruence
∴ - therefore
`f(x)`
`f^{-1}(x)`
`2{\phi}`
`2{\theta}`
`2{\alpha}`
`2{\beta}`
`2{\pi}`
`\frac{\pi}{2}`
`\frac{5\pi}{3}`
( φ ; 20 ) = `(\space{\phi}\space;\space{20}\space)`
`slope = \frac ${y_s}${x_s}`
`midpoint=\left(\frac{${x_1}+${x_2}}{2},\frac{${y_1}+${y_2}}{2}\right)`
`distance=\sqrt{\left(${x_2}-${x_1}\right)^2+\left(${y_2}-${y_1}\right)^2}`
SpyColors.com
Black: `\textcolor{#140616}{a}`
`\textcolor{black}{a}`
`\textcolor{violet}{a}`
`\textcolor{cyan}{a}`
`\textcolor{magenta}{a}`
`\textcolor{red}{a}`
`\textcolor{green}{a}`
`\textcolor{blue}{a}`
`\textcolor{purple}{a}`
`\textcolor{orange}{a}`
`\textcolor{yellow}{a}` etc.
`f(x)`
`f^{-1}(x)`
`2{\phi}`
`2{\theta}`
`2{\alpha}`
`2{\beta}`
`2{\pi}`
`\frac{\pi}{2}`
`\frac{5\pi}{3}`
( φ ; 20 ) = `(\space{\phi}\space;\space{20}\space)`
`slope = \frac ${y_s}${x_s}`
`midpoint=\left(\frac{${x_1}+${x_2}}{2},\frac{${y_1}+${y_2}}{2}\right)`
`distance=\sqrt{\left(${x_2}-${x_1}\right)^2+\left(${y_2}-${y_1}\right)^2}`
SpyColors.com
Black: `\textcolor{#140616}{a}`
`\textcolor{black}{a}`
`\textcolor{violet}{a}`
`\textcolor{cyan}{a}`
`\textcolor{magenta}{a}`
`\textcolor{red}{a}`
`\textcolor{green}{a}`
`\textcolor{blue}{a}`
`\textcolor{purple}{a}`
`\textcolor{orange}{a}`
`\textcolor{yellow}{a}` etc.
`\left( A_1,\ A_1\right)=(\ ${A_1}\ ;\ ${A_2}\ )`
`\left( B_1,\ B_1\right)=(\ ${B_1}\ ;\ ${B_2}\ )`
x₁ = ${x1} x₂ = ${x2}
( s ; t ) = ( ${s} ; ${t} )
( x₁ ; y₂ ) = ( ${x1} ; ${y2} )
( A₁ ; A₂ ) = ( ${A1} ; ${A2} )
a→ • b→ / ( | a→ | • | b→ | )
`\textcolor{black}{\overrightarrow{\ a\ }}`
Enhedsvektor: `\hat{i}`
`\textcolor{black}{\left(x_0,\ f\left(x_0\right)\right)}`
`\textcolor{#140616}{\left(x_0+h,\ f\left(x_0+h\right)\right)}`
`\textcolor{black}{(\ ${x0}\ ;\ ${y0}\ )}`
`\textcolor{black}{\left(\ x_0\ ;\ y_0\ \right)=(\ ${x0}\ ;\ ${y0}\ )}`
`\left(\ x_1,\ f\left(x_1\right)\right)=(\ ${x1}\ ;\ ${f_x1}\ )`
`\left(\ x_2,\ f\left(x_2\right)\right)=(\ ${R_x2}\ ;\ ${f_x2}\ )`
{a} A = ( {A1} ; {A2} ) ( x₀ ; y₀ ) = ( ${x0} ; ${y0} )
{b} B = ( {B1} ; {B2} ) ( x₁ ; y₁ ) = ( ${x1} ; ${y1} )
{c} C = ( {C1} ; {C2} ) ( x₂ ; y₂ ) = ( ${x2} ; ${y2} )
{d} D = ( {D1} ; {D2} ) ( x₃ ; y₃ ) = ( ${x3} ; ${y3} )
{k} E = ( {E1} ; {E2} ) ( x₄ ; y₄ ) = ( ${x4} ; ${y4} )
( AB ⋅ AC ) / ( | AB | ⋅ | AC | )
∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ
( s ; t ) = ( ${s} ; ${t} )
( x₁ ; y₂ ) = ( ${x1} ; ${y2} )
( A₁ ; A₂ ) = ( ${A1} ; ${A2} )
a→ • b→ / ( | a→ | • | b→ | )
`\textcolor{black}{\overrightarrow{\ a\ }}`
Enhedsvektor: `\hat{i}`
`\textcolor{black}{\left(x_0,\ f\left(x_0\right)\right)}`
`\textcolor{#140616}{\left(x_0+h,\ f\left(x_0+h\right)\right)}`
`\textcolor{black}{(\ ${x0}\ ;\ ${y0}\ )}`
`\textcolor{black}{\left(\ x_0\ ;\ y_0\ \right)=(\ ${x0}\ ;\ ${y0}\ )}`
`\left(\ x_1,\ f\left(x_1\right)\right)=(\ ${x1}\ ;\ ${f_x1}\ )`
`\left(\ x_2,\ f\left(x_2\right)\right)=(\ ${R_x2}\ ;\ ${f_x2}\ )`
{a} A = ( {A1} ; {A2} ) ( x₀ ; y₀ ) = ( ${x0} ; ${y0} )
{b} B = ( {B1} ; {B2} ) ( x₁ ; y₁ ) = ( ${x1} ; ${y1} )
{c} C = ( {C1} ; {C2} ) ( x₂ ; y₂ ) = ( ${x2} ; ${y2} )
{d} D = ( {D1} ; {D2} ) ( x₃ ; y₃ ) = ( ${x3} ; ${y3} )
{k} E = ( {E1} ; {E2} ) ( x₄ ; y₄ ) = ( ${x4} ; ${y4} )
( AB ⋅ AC ) / ( | AB | ⋅ | AC | )
∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ
← ↓ → ↑ ↔ ↵ ⇐ ⇓ ⇒ ⇑ ⇔
≠ ≥ ≤ ≤ ≥ < > ≡ ≢ ∼ ≅ ≈ ∝
∥ ∦ ⊥ ⟂
x⁺ x⁻ x⁼ x ⁽x⁾ xⁿ x₀ x₁ x₂ x₃ x₄ x₅ x₆
x₇ x₈ x₉ x₊ x₋ x₌ x ₍x₎ xₐ xₑ xₒ xₓ xₔ
xₕ xₖ xₗ xₘ xₙ xₚ xₛ xₜ
A₁ + d₁ t = B₁ + e₁ t
A₁ + d₁ t - B₁ = e₁ t
A₂ + d₂ t = B₂ + e₂ t
A₂ + d₂ t - B₂ = e₂ t
¹/₂ ¹⁄₂ ⅓ ¼ ⅕ ⅙ ¾ ⅖ ⅐
⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘
⅙ ⅚ ⅛ ⅜ ⅝ ⅞ ⅟ ↉
+ − ± × ÷ ⋅ / ≤
△ ∆ ∇ ℘ ℑ ℜ
ƒ ∂ ∫ ∑ ∏π √ ∞
{ } x' α, β, α, β, γ, γ θ π π τ ϕϕ ϕ Ф ω
≠ ≥ ≤ ≤ ≥ < > ≡ ≢ ∼ ≅ ≈ ∝
∥ ∦ ⊥ ⟂
x⁺ x⁻ x⁼ x ⁽x⁾ xⁿ x₀ x₁ x₂ x₃ x₄ x₅ x₆
x₇ x₈ x₉ x₊ x₋ x₌ x ₍x₎ xₐ xₑ xₒ xₓ xₔ
xₕ xₖ xₗ xₘ xₙ xₚ xₛ xₜ
A₁ + d₁ t = B₁ + e₁ t
A₁ + d₁ t - B₁ = e₁ t
A₂ + d₂ t = B₂ + e₂ t
A₂ + d₂ t - B₂ = e₂ t
¹/₂ ¹⁄₂ ⅓ ¼ ⅕ ⅙ ¾ ⅖ ⅐
⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘
⅙ ⅚ ⅛ ⅜ ⅝ ⅞ ⅟ ↉
+ − ± × ÷ ⋅ / ≤
△ ∆ ∇ ℘ ℑ ℜ
ƒ ∂ ∫ ∑ ∏π √ ∞
{ } x' α, β, α, β, γ, γ θ π π τ ϕϕ ϕ Ф ω
Latex Math Symbols
Ingen kommentarer:
Send en kommentar