torsdag den 13. august 2015

Trigonometri og differentiation

3 cos ( x ) e-x + 3 sin ( x )

















(x) = 3 ⋅ cos(x) ⋅ ex + 3 ⋅ sin(x)

(x) = f ' (x) =


3 (cos(x))'  ex + 3 cos(x (ex)' + 3 cos(x) =


−3 sin(x ex + 3 cos(x⋅ (−ex) + 3 cos(x) =


e⋅ 3 sin(x) − e⋅ 3 cos(x) + 3 cos(x) =

e(3 sin(x) + 3 cos(x)) + 3 cos(x)



(x) = cos(3x) + 2 ⋅ sin(2x)

(x) = f ' (x) =

(cos (3x))' + 2 ⋅ (sin (2x))' =

−sin(3x) ⋅ (3x)' + 2 ⋅ cos(2x) ⋅ (2x)' =

− sin(3x) ⋅ 3 + 2 ⋅ cos(2x) ⋅ 2

Ingen kommentarer:

Send en kommentar