x0 = 20 f (x) = 0,05 ⋅ x2 f ' (x) = ddx f (x)
Tangentens hældningskoefficient (= f's differentialkvotient i x0) fås ved at dele delta y med delta x: y − f (x0)x − x0 = f ' (x0) 2 ⋅ 0,05 ⋅ x0 = 2 f ' (x0) = 2 | Tangentens ligning y − f (x0) = f ' (x0) ⋅ (x − x0) y = f ' (x0) ⋅ (x − x0) + f (x0) y = f ' (x0) ⋅ x − f ' (x0) ⋅ x0 + f (x0) Tangentens konstanter a1 = f ' (x0) b1 = − f ' (x0) ⋅ x0 + f (x0) Tangenten tegnes t (x) = a1 ⋅ x + b1 |
Ingen kommentarer:
Send en kommentar