onsdag den 1. juli 2015

Integral-bestemmelse (eksempler)


∫ 4e2dx = 

4 ⋅∫ e2dx =

4 ⋅ 12 ⋅ e2x + k =

2 ⋅ e2x + k




 ( x6 + 1x ) dx =

17 ⋅ x7 + ln ) + k, x > 0




− 12 x dx =

 x + k, x > 0




35 ⋅ x5 + x3 − x − 5 ) dx = 

⋅ x6⋅ 6 + 14 ⋅ x4 − 12 ⋅ x2 − 5x + k


x610 + x44 − x22 − 5x + k





( 17 − 4x + e−5dx =

17x − 4 ⋅ ln ) − e−5x5 + k, x > 0

6x − 3e)dx=

6 ⋅ 12 ⋅ x2 − 3 ⋅ 1−1 ) ⋅ ex + k =

3 ⋅ x2 + 3 ⋅ ex + k =


3 ⋅ x2 + e) + k =





Fra afledt funktion til stamfunktion

















x1,5 − 2 + 8x2 ) dx =

x2,52,5 − 2x + 8 ⋅ ( x0x2 ) dx =


x2,52,5 − 2x + 8 ⋅∫ x−2 dx =

x2,52,5 − 2x + 8 ⋅ x−2 + 1 −1 + k =

x2,52,5 − 2x + 8 ⋅ x−1 ) + k =

x2,52,5 − 2x− 8x

 + k




Ingen kommentarer:

Send en kommentar